culary Flash Cards	
angle of depression	angle of elevation
Chapter 9 (p.497)	Chapter 9 (p.490)
cosine	geometric mean
Chapter 9 (p. 494)	Chapter 9 (p.480)
inverse cosine	inverse sine
Chapter 9 (p. 502)	Chapter 9 (p. 502)
inverse tangent	Law of Cosines
Chapter 9 (p. 502)	Chapter 9 (p.511)

The angle that an upward line of sight makes with a horizontal line

The angle that a downward line of sight makes with a horizontal line

A trigonometric ratio for acute angles that involves the lengths of a leg and the hypotenuse of a right triangle

$\cos A=\frac{\text { length of leg adjacent to } \angle A}{\text { length of hypotenuse }}=\frac{A C}{A B}$

An inverse trigonometric ratio, abbreviated as $\sin ^{-1}$
For acute angle A, if $\sin A=y$, then $\sin ^{-1} y=m \angle A$.

An inverse trigonometric ratio, abbreviated as $\cos ^{-1}$
For acute angle A, if $\cos A=z$, then
$\cos ^{-1} Z=m \angle A$.

For $\triangle A B C$ with side lengths of a, b, and c,

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos A, \\
& b^{2}=a^{2}+c^{2}-2 a c \cos B, \text { and } \\
& c^{2}=a^{2}+b^{2}-2 a b \cos C .
\end{aligned}
$$

An inverse trigonometric ratio, abbreviated as $\tan ^{-1}$
For acute angle A, if $\tan A=x$, then
$\tan ^{-1} x=m \angle A$.

$\tan ^{-1} \frac{B C}{A C}=m \angle A$

ulary Flash Cards	
Law of Sines	Pythagorean triple
Chapter 9 (p.509)	Chapter 9 (p. 464)
sine	solve a right triangle
Chapter 9 (p.494)	Chapter 9 (p. 503)
standard position	tangent
Chapter 9 (p.462)	Chapter 9 (p.488)
trigonometric ratio	
Chapter 9 (p.488)	

A set of three positive integers a, b, and c that satisfy the equation $c^{2}=a^{2}+b^{2}$

Common Pythagorean triples:
3, 4, 5
5, 12, 13
8, 15, 17
7, 24, 25

To find all unknown side lengths and angle measures of a right triangle

You can solve a right triangle when you know either of the following.

- two side lengths
- one side length and the measure of one acute angle

For $\triangle A B C$ with side lengths of a, b, and c,

$$
\begin{aligned}
& \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c} \text { and } \\
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} .
\end{aligned}
$$

A trigonometric ratio for acute angles that involves the lengths of a leg and the hypotenuse of a right triangle

$$
\sin A=\frac{\text { length of leg opposite } \angle A}{\text { length of hypotenuse }}=\frac{B C}{A B}
$$

A right triangle is in standard position when the hypotenuse is a radius of the circle of radius 1 with center at the origin, one leg lies on the x-axis, and the other leg is perpendicular to the x-axis.

A ratio of the lengths of two sides in a right triangle

Three common trigonometric ratios are sine, cosine, and tangent.

$$
\begin{aligned}
& \tan A=\frac{B C}{A C}=\frac{3}{4} \\
& \sin A=\frac{B C}{A B}=\frac{3}{5} \\
& \cos A=\frac{A C}{A B}=\frac{4}{5}
\end{aligned}
$$

